Grounding grid design of 132/11 kV transmission substation with vertical ground rods

Posted on


This paper presents grounding grid design of 132/11 kV transmission substation with vertical ground rods. The soil resistivity is modeled as a uniform model. The preliminary design shows that the mesh voltage is exceeding the tolerable touch voltage. Therefore, a modification is necessary to improve the safety of the substation.

Design #2 is constructed by adding a crushed-rock protective surface layer and 60 ground rods with 3m long along the periphery. The result shows that the mesh and step voltage is lower than the tolerable values. The analytical calculation is then compared to computer simulation using ETAP Grounding Grid System. It shows a similarities between analytical calculation and computer simulation. However, because of the difference between mesh voltage and the tolerable touch voltage is very small, design #2 still needs to be improved.

The improvement design called design #3 is constructed using unequally spaced horizontal grid conductors with Optimum Compression Ratio (OCR) are analyzed analytically then the results are compared to ETAP simulation. Only 32 rods is used which consisted by 4 rods in the corner with 5m long and 28 rods along the periphery. The result shows significant improvement in mesh voltage and step voltage. Hence, design #3 is a safe and effective solution. It also have been estimated that the total cost material required for design #3 is USD 42,100.

Simplified probability risk assessment is calculated to support the design. Individual risk calculation implies that design #3 is safe because it has no risk of ventricular fibrillation in the vicinity of the substation.

The safety of people in and around high voltage substations is of primary concern when evaluating the performance of a substation grounding grid system. The risk arises as a result of rise of earth potential during power system earth fault conditions. The magnitude of the earth return fault current at power frequency can range from a few kA up to several tens of kA, and the earth potential rise can be as high as several tens of kV even with low magnitude earth impedances in the range of 0.05 Ω to 1 Ω.

In the past, grounding systems were designed to achieve earth resistances below a specified value. Current practice, however, dictates that such grounding systems are designed to control step, touch and mesh voltages within and around the electric Baca entri selengkapnya »

HDMI Design Guidelines : Layer Stack-up, Differential Pair

Posted on

This article presents design guidelines for helping users of HDMI mux-repeaters to maximise the device’s full performance through careful printed circuit board (PCB) design. We’ll explain important concepts of some main aspects of high-speed PCB design with recommendations.
This discussion will cover layer stack, differential traces, controlled impedance transmission
lines, discontinuities, routing guidelines, reference planes, vias and decoupling capacitors.

Layer stack

The pin-out of a HDMI mux-repeater is tailored for the design in HDTV receiver circuits (see Picture below). Each side of the package provides a HDMI port, featuring four differential TMDS signal pairs, thus resulting in three input and one output port. The remaining signals comprise the supply rails, Vcc and ground, and lower speed signals such as the I2C interface, Hotplug-detect and the mux-selector pins.

FIG 1. The device pin-out is tailored for HDTV receiver applications

Baca entri selengkapnya »